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HYDRODYNAMIC INSTABILITY AND REGIMES OF FRAGMENTATION OF DROPS 

A. G. Girin UDC 532.529.6 

Estimates of the dispersal parameters are obtained and an explanation is proposed 
for the mechanism of various types of destruction on the basis of a linear analysis 
of the stability of the surface of a drop. 

The fragmentation of liquid drops and jets by a high-speed gas stream is an important 
process in many industrial installations and can exert considerable influence on the flow 
of gas-drop mixtures. Because of the complexity of the physical phenomena comprising this 
process, fragmentation is studied predominantly by empirical methods, so that it has been 
well investigated experimentally but a complete theoretical model does not yet exist [I, 2], 
preventing one from obtaining reliable estimates of the sizes of the droplets torn off and 
the time of their separation and clarifying the various types of destruction. 

In [3] an attempt was made to give a unified explanation of fragmentation as the mani- 
festation of hydrodynamic instability of the drop surface. In that paper a mathematical model 
of a fragmenting drop was constructed on the basis of a solution of the problem of the stabil- 
ity of an accelerated tangential velocity discontinuity, and it was concluded that the de- 
scription of the phenomenon is adequate, despite the definite quantitative inconsistency. 

Further refinement of the model, connected with an investigation of the inviscid in- 
stability of the interface between two media with the property of continuity of the velocity 
profile inherent to actual fluxes, showed [4] that the model of a tangential discontinuity 
can only serve as a rough approximation, since the decrease in the velocities of the media 
in the boundary layers has a considerable stabilizing action. 

For two-phase systems of the air-water, air--kerosene, etc. type the instability of the 
continuous profile is due to gradient flow of the denser liquid in the boundary layer and is 
described by the dispersion relation for the dimensionless "frequency" z = ~/V i of a dis- 
turbance of the type exp (ihx -- i~t), 

(z--A)[(z--A)(z+AA)+A(I~4)]:(z_AA)[~A3We~ 1 A6gv~~ ~ 1, (1) 
1 

where  A = h6;  A = (1 -- exp ( - - 2 5 ) ) / 2 .  

An analysis of the development of gradient instability under the conditions of the flow 
of a gas stream over a drop is of interest. Below we find the conditions for the appearance 
of instability, estimates of the main characteristics of the destruction are obtained, and 
certain conclusions about the character of the destruction are drawn on this basis. 

First of all we must investigate the vicinity of the rim of the drop (~=~/2), where the 
separation of particles is observed experimentally. Here the influence of acceleration is 
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small, gcos ~-----0 , and an analysis of Eq. (I) shows the existence of a root possessing grow- 
ing perturbations and having a periodic character. For it in Fig. ] we plot graphs of the 
dimensionless wave number &* and the increment Im(z(A*)) of growth of the amplitude of the 
wave growing at the maximum rate. The quantities A* and z(A*), and hence the development of 

unstable perturbations, depend on the values of the Weber number We b of flow in the liquid 
boundary layer. As is seen, an unstable root exists for We b ~ 0.004, disappearing for We b < 
0.004 due to stabilization of disturbances by surface tension, while for We b ~ 0.025 the 
forces of surface tension are small compared with the hydrodynamic forces, resulting in the 
root being independent of Web. In this case Eq. (1) is simplified owing to the isolation 
of the real root z = & and it yields the constant values A* ~ 1.22 and Im (z(&*)) ~ 0.24 char- 
acter$~tic for gradient instability. 

We shall treat fragmentation as a local manifestation of instability of the surface of 
a drop, for which we divide it into a system of elementary plane areas characterized by the 
angle ~ . For a given law Vg (~) of potential flow over a deformed drop and a given distri- 
bution ~(~)=l(~)d0~e -e,5 of thickness of the boundary layer at it we write the expression for 
the variation of We b along the surface: 

Web(~)=al(~)Q(~)WeRe-O.5 , a =  P=, Q=  pgV~_ (2) 

From (2) it follows that the stability of the surface of a drop is determined both by 
the regime of flow over it (the distribution of IQ) and by the general properties of the 
stream (the values of WeRe-~ and the second factor, varying in a wide range, can con- 
siderably alter the regime of destruction of the drop as a whole. In this connection the 
parameter WeRe -~ plays an important role in determining the character of the fragmentation. 
In fact, a large number of experiments on the character of fragmentation. In fact, a large 
number of experiments on the character of fragmentation can be systematized [2] with the use 
of just this parameter; in Fig. 2 we show the regions I, II, and III of different regimes of 
fragmentation from this paper. 

Let us estimate the critical conditions for the appearance of instability. The con- 
dition We b ~ 0.004 for ~ = 0.0013, ~ = ~/2, 7 = 5, and Q = 2 with allowance for (2) is equiv- 
alent to 

(We Re-~ ~ 0,3. (3) 
This condition for the appearance of periodic unstable perturbations on the surface of a drop 
agrees well with empirical criteria for the existence of fragmentation with separation of the 
surface layer [2, 5]. It is obvious that only those unstable perturbations for which the 
half-wavelength is less than the thickness of the deformed drop can lead to dispersal. We 
implement this condition for different values of We and Re by using the relations A*(We b) and 
(2), and we obtain a relation isolating the region A of possible periodic disposal in the 
plane We--WeRe -~ of fragmentation regimes. It is bounded on the left and below by the curve 
B (Fig. 2) and essentially coincides with the empirically constructed regions II and Ill of 
the existence of fragmentation with separation of the surface layer. This coincidence allows 
us to explain the destruction in regions II and III as periodic dispersal due to gradient in- 
stability of the drop surface. 

The size of the particles torn off from each elementary area can be estimated as the 
length %*(~) of the unstable wave developing on it, while the separation time can be esti- 
mated as the time of the e-fold growth of its amplitude: ~(~)=~0.sV~d~Im-~(~(A*)). In the 
simplest approximation we assume that the potential flow over the deformed drop corresponds 
to potential flow over a sphere, i.e., Vg(~)~ 1.5V=sin% while for the thickness of the bound- 
ary layer at the drop we use Eq. (7) obtained in [6]: 

l (~) = 1.1 [(6~ - -  4 sin 2~ q- 0.5 sin 4~) /s in  5 ~]o.5. 

The results of a calculation of %*(~) and T~(~) (see Table I) made using the relations A* x 
(Web) , Im (z*(Web)) , and (2) allow one to obtain quantitative estimates of the dispersal param- 
eters for each elementary area characterized by the angle ~ as a function of the values of 
the determining parameters We and Re, as well as to draw conclusions of a qualitative char- 
acter. 

For values of We and Re corresponding to region A there exists a critical point on the 
surface of the drop at which the local value of Web(~ cr) equals the critical value: We b 
0.004. It divides the surface of the drop into two zones: one stable against periodic 
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Fig. I. Graphs of the functions s b) and Im (z*(Web)). 

Fig. 2. Empirical regions of fragmentation regimes I, II, 
and III [2] and region A of destruction in the regime of 
periodic dispersal. 

perturbations (~<~ cr) and an unstable zone located near the rim, ~ cr < ~ ~ v/2. With an 
increase in WeRe -~ the critical points shifts away from the rim toward the front stagnation 
point, which leads to an increase in the area from which dispersal occurs. Thus, an explana- 
tion is found for the experimental fact [7] of particle separation far ahead of the equator 
of a drop, at ~ < ~/2, which cannot be explained within the framework of any theory proposed 
up to now, such as the separation of the boundary layer. This also explains the good agree- 
ment between experiment and the results of a calculation of the transverse deformation of a 
drop made without satisfying the continuity equation [7]. The calculated data were compared 
with the size of the region containing a large number of already separated particles and 
therefore not having the property of continuity (Fig. 3c). 

The dispersal period over a large part of the surface levels out with an increase in 
WeRe -~ Together with the increase in the dispersal area this leads to an increase in the 
rate of mass loss and creates the impression of a sudden intense fragmentation, characteristic 
for region III and known as "explosive decay." 

The condition when surface tension does not affect the development of perturbations, 
We b ~ 0.025, is equivalent to the following: WeRe -~ ~ > 2. In this region the fragmentation 
parameters are expressed through the Reynolds number: 

L* l �9 l 

do R e  ~ ' Re  ~ 

Since the volume carried off by particles from an elementary area is proportional to (I*) 2 
(with allowance for axial symmetry) while the number of particles is proportional to (I*) -l, 
the rate of mass loss proves to be approximately constant (in agreement with experiment [7]) 
and equal to dM/dT ~ -0.3. Hence the time of complete destruction is T d ~ 3.3, which agrees 
with experiment [7]: T d ~ 3.5. 

TABLE I. Calculated Values of %*d~iRe ~ (numerator) and 
T~Re ~ <denominator) (STA: stable sections of drop surface) 

sin r 
WeRe -0 ,5  

1,00 I ,95 0,90 0,85 0,75 0,65 0,60 0,50 I),35 0,30 0,20 

30,0 
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11,8 
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11,8 
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10,4 
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28,5 

STA 

9,9 

9,5 

14,( 

136, 

STA 
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STA 
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Fig. 3. Schemes of destruction of a drop: a) "para- 
chute" type; b) "claviform" type; c) in the dispersal 
regime. 

Fig. 4. Graphs of the functions %*/d0(We) (I) and 
T~(We) (2) for Taylor-unstable perturbations in the 
region of low values of We. Dashed curves: classic 
solution for half-spaces; solid lines: solution for a 
sheet. 

On that part of the surface of a drop where one cannot take gcos ~=0 one must take 
into account the Rayleigh--Taylor instability factor. The analysis of Eq. (I) and its appli- 
cation are difficult in this case and they can be done numerically for concrete values of 
the parameters within the framework of the model of [3]. 

In a number of experimental and theoretical papers [8] it has been established that 
aperiodic unstable Taylor perturbations in the nonlinear stage of development have a constant 
rate of growth of amplitude, U = 0.338(%*g) ~ ~ We -0"25 Hence it follows that in region III 
the time of "broaching" of a drop by aperiodic perturbations should grow as We ~ which is 
at variance with numerous experiments [7], Zd ~ We-~ and indicates the insignificant role 
of Taylor instability in region III. Evidently, this type of instability can be realized only 
in the concluding stage and destroy the part of the drop remaining after the action of peri- 
dic instability. 

In regions I and II the role of Taylor instability is important. We can show that the 
action of just this type of instability can explain destruction of the "parachute" and "clavi- 
form" types. The stabilization of gradient instability reduces our problem to the investiga- 
tion of the stability of an accelerating layer of liquid. Such a problem was analyzed in [3], 
where a dispersion relation and a transcendental equation for the length of the fastest grow- 
ing wave were obtained. In Fig. 4 we present the solution of these equations in the region 
of small values of We with allowance for the axial symmetry of the problem for the values 
k = 2, d = 3d0, and Vg = 0 in the form of l*(We) and ~(We) graphs. Here the conditions for 
a free surface were adopted because of the strong deformation of the drop and its poor stream- 
lining on the back side. 

The results of the calculation show that in the range of 5 ~ We ~ 60 the drop is subject 
to the action of perturbations with a wavelength greater than the initial diameter and com- 
parable with the transverse size d of the deformed drop. When the condition %*/2 ~ d is sat- 
isfied, in particular, the unstable perturbation can lead to destruction. This condition is 
satisfied for We > Wecr ~ 5. The value of Wecr coincides with the empirically determined 
values of the critical Weber number. 

The action of a perturbation with %*/2 ~ d initially leads to warping of the flattened 
drop (Fig. 3a) and then to the continuous, by virtue of the aperiodicity of the instability, 
elongation of the resulting cavity, which in the nonlinear stage expands in the direction 
transverse to the acceleration, which is characteristic for a Taylor instability [9], and 
forms a "parachute." 
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With an increase in We, i* decreases and a situation arises when three half-waves of the 
perturbation fit into the transverse diameter of the disk: 31"/2 ~ d. In this case the gas 
cavities also expand and form "sacks," while the part of the perturbation facing the gas forms 
a peak (this is also a characteristic property of Taylor-unstable perturbations [9]) and the 
pestle peculiar to the "claviform" develops (Fig. 3b). Curve I of Fig. 4 shows that these 
conditions are satisfied for We > Wecr = 30. 

For We > 60 several wavelengths of perturbation act on the liquid disk at once. More- 
over, the appearance of periodically unstable perturbations on the rim of the drop is pos- 
sible under these conditions. Evidently, the combined action of these two kinds of unstable 
perturbations leads to the chaotic type of destruction. The above comparisons show the good 
qualitative and quantitative agreement of the proposed model with experiment. The unified 
description of all the main types of destruction from the standpoint of the theory of hydro- 
dynamic stability, permitting the construction of a simple mathematical model of a fragment- 
ing drop on this basis, must be included among the advantages of the model. 

It must be noted that such an approach can be used to describe the interaction between 
phases leading to destruction in other systems such as bubbles and films. 

NOTATION 

h = 27/I, wave number of perturbation; 6, thickness of the boundary layer in the liquid; 
V~, p~, velocity and density of the gas stream impinging on the drop; Vg, pg, values of the 
gas velocity and density on an elementary area; Vi, velocity at the interface between media; 
Pl, liquid density; ~, surface tension coefficient; do, initial drop diameter; d, transverse 
deformation of the drop; g = ~kV~d~ I, acceleration of the drop; We = p~V~d0o -z, Weber number 
of the gas stream; Re = p~V~d0~ l, Reynolds number of the gas stream; We b = pgV~6~ -I, Weber 
number of flow in the liquid boundary layer; @, angle between the velocity vector of the im- 
pinging stream and the normal to the drop surface. 
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